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Abstract 
 Selection of the best set of scales is problematic when developing signal-
driven approaches for pixel-based image segmentation. Often, different 
possibly conflicting criteria need to be fulfilled in order to obtain the best trade-
off between uncertainty (variance) and location accuracy. The optimal set of 
scales depends on several factors: the noise level present in the image material, 
the prior distribution of the different types of segments, the class-conditional 
distributions associated with each type of segment as well as the actual size of 
the (connected) segments. We analyse, theoretically and through experiments, 
the possibility of using the overall and class-conditional error rates as criteria 
for selecting the optimal sampling of the linear and morphological scale spaces. 
It is shown that the overall error rate is optimised by taking the prior class 
distribution in the image material into account. However, a uniform (ignorant) 
prior distribution ensures constant class-conditional error rates. Consequently, 
we advocate for a uniform prior class distribution when an uncommitted, scale-
invariant segmentation approach is desired.  
 Experiments with a neural net classifier developed for segmentation of 
dynamic MR images, acquired with a paramagnetic tracer, support the 
theoretical results. Furthermore, the experiments show that the addition of 
spatial features to the classifier, extracted from the linear or morphological 
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scale spaces, improves the segmentation result compared to a signal-driven 
approach based solely on the dynamic MR signal. The segmentation results 
obtained from the two types of features are compared using two novel quality 
measures that characterise spatial properties of labelled images. 
 
Keywords: Scale selection, linear scale space, dynamic contrast-enhanced MR-
imaging, non-linear morphological filtering, morphological scale space, scale-
invariant segmentation. 
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1. Introduction 
 Segmentation of an image can in many situations be considered a pattern 
recognition problem where each pixel (or voxel) is to be assigned a specific label 
by a classifier. Techniques from statistical pattern recognition have in the past 
been used in many different ways to segment images. Two frequently occurring 
segmentation tasks are object recognition (e.g., coin recognition [1]) and texture 
segregation (e.g., feature detection in cartographic images [2]). Different types 
of approaches have been developed for solving such segmentation problems. An 
important distinction should be made between approaches that are signal-
driven [3], feature-driven [4, 5] and modular approaches [6], the latter often 
combine signal- and feature-driven methods. Which of the three types of 
approach best solves a particular segmentation task, depends on the prior 
knowledge of the problem at hand and of the degrees of freedom that are 
present in the underlying image material. In many practical segmentation 
problems, concomitant variations in position, orientation and size impedes a 
broad application of the developed approach. In (2D) perspective images, 
additional degrees of freedom such as slant and tilt often need to be taken into 
account. In the following, we restrict the scope to segmentation that is 
invariant with respect to the three affine image transformations: translation, 
rotation and scaling. 
 Generally, both signal- and feature-driven approaches cope with variations 
in position by convolution. A window is slid across the image and its central 
pixel/voxel is assigned the most likely class label based on, e.g., the contents of 
the window [7] or on a derived feature vector [8]. In case of non-isotropic 
patterns, rotation invariance needs to be incorporated into the segmentation 
algorithm too. A frequently applied technique for incorporating rotation 
invariance into signal-driven segmentation approaches is by preprocessing 
with the Karhunen-Loève transform (principal component analysis) [1, 9, 10]. 
For feature-driven segmentation approaches, application of rotation-invariant 
features − e.g. the moments of Hu [11], Zernike moments [12] or Fourier 
descriptors [13] − automatically ensures that the segmentation approach gives 
the same result regardless of how the image is oriented. 
 Scale-invariant segmentation is, in general, more difficult to achieve, partly 
because of the discrete nature of digital images. Appropriate rescaling of a 
sampled signal requires an interpolation scheme [14]. However, Nyquists 
criterion imposes a natural limit to the resolution to which the image can be 
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scaled. Instead of rescaling the image, scale-invariant segmentation can be 
obtained by, e.g., including image patches at different scales in the training set 
[15]. Another approach entails transforming the image by an invariant 
mapping such as the Fourier-Mellin transform [16, 17]. Scale-invariant 
segmentation can also be obtained by training a classifier based on features 
that eliminate changes in scale. Such scale-invariant features include wavelets 
[5], features from the linear scale space [18] and different statistical moments 
[19, 20]. Statistical moments have the disadvantage that they are sensitive to 
noise and distortions. For signal-driven segmentation algorithms that are 
based on a wavelet decomposition or a stack of scaled images, the classifier 
needs to learn variations in scale explicitly which means that changes in scale 
are regarded as intra-class variation. When a set of features computed at a 
number of different scales is provided as input to a classifier, not all scales will 
contribute equally much to making the best distinction between the different 
segments. In previous articles, we suggested to use a feature selection 
mechanism for identifying the best sampling scheme of the scale space [9, 21]. 
In this article, we will perform a theoretical analysis of the problem of scale 
selection for signal-driven segmentation algorithms. The derived results are 
verified by a set of experiments with a sequence of dynamic MR images. 
 In the following, we will first reformulate segmentation as a classification 
problem. We then establish a mathematical framework for Bayesian inference 
in which it is shown how the minimal error-rate Bayesian classifier can be 
used to perform scale selection. Within this framework, we show that selection 
of the optimal set of scales requires choosing an appropriate trade-off between 
bias and variance. Moreover, it will be shown that an uncommitted, invariant 
segmentation algorithm needs to be trained with a uniform prior class 
distribution. An uncommitted algorithm is desired when there is no 
information available regarding the prior distribution of the pixels belonging to 
the different types of segments.  
 We investigate the theoretical results in a set of experiments where a 
pattern classifier (neural network) is developed for scale invariant 
segmentation of dynamic perfusion MR images. Some theoretical results 
regarding scale invariance are tested on synthetic images composed of samples 
from real MR images. 
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2. Background 
 Define an image as a high-dimensional manifold I(x), with x=(x1,..,xd), xi ∈ Xi. 
In the sequel, we first define minimal-error rate classification. It is 
subsequently shown how a minimal error-rate classifier can segment an image. 
 
2.1 Minimal error-rate classification 
 Let z denote an n-dimensional vector consisting of continuous features. 
Bayes’ classification rule is defined as [22] 
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with P(ωj), j=1,..,c, and P(ωj|z) the prior and posterior probabilities that the 
vector z belongs to class j, respectively, and p(z|ωj) the class-conditional 
probability density function of class j. In case all misclassifications are 
considered inducing the same loss, the vector z should be assigned the class-
label with the maximal posterior probability, oj=P(ωj|z) 
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This classification function is called the winner-takes-all rule and results in a 
partitioning of the feature space into disjoint regions Rj [23] 
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The Bayesian classifier that segments the feature space according to the 
partitioning R1,..,Rc, results in the minimal error rate ε* [22] 
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with the conditional probability P(z ∈ Rj|ωj)=P(z ∈ Rj, ωj)/P(ωj). 
 In practice, the posterior probabilities P(ωj|z) are estimated by a classifier 
that approximates the optimal mapping N: ℜn → [0,1]c, with c the number of 
classes that need to be discerned. 
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2.2 Signal-driven segmentation 
 Signal-driven segmentation of the image I(x) entails a partitioning of the 
image elements (pixels or voxels) into clusters that correspond with the desired 
segmentation result. Segmentation can be seen as a classification task, which 
has as purpose the assignment of a label to each image element. Define the 
segmented (labelled) image by an implicit convolution 
  )())),(((class)( 21 dXXXINS �×∈= xxx     (6) 

with o=N(x) denoting the classifier. A connected cluster of image elements in 
S(x) that are assigned the same label is considered one segment. 
 
 
3. Segmentation using scale space features 
 In the sequel, we give a brief introduction to the linear scale space and show 
how a Taylor expansion can be used to capture the local geometric structure of 
an image. 
 
3.1 The linear scale space 
 A widely applied framework for image analysis that takes explicitly the 
scale of image features into account, is the linear scale-space [24-27]. In the 
linear scale-space, a stack of images is formed as a function of an increasing 
inner scale t. The two-dimensional linear scale-space is based on the linear 
diffusion equation [25]: 
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where 
1x

I∇ and 
2xI∇ denote the second-order derivatives of I(x1,x2,t) in the x1- 

and x2-direction, respectively, and D(2,2) the second-order differential operator. 
The normalised Gaussian kernel is defined as: 
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with x = (x1,x2)
T and t denoting the variance (width) of the kernel. The integral 

∫ =1);( xx dtG , which means that convolving a signal with the Gaussian kernel, 

I ∗G, does not effect its average intensity-level. The generalisation of the linear 
scale space to d>2 dimensions, x=(x1,x2,…,xd)

T, is straightforward. 
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3.2 Taylor expansion features 
 When I(x) is a continuous, analytical function and all partial derivatives 
with respect to x are defined, it can be approximated in a neighbourhood 
around x0 by a multidimensional Taylor expansion [28] 
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with h an element in Λ, a set of multi-indices, and Dh the vectorial derivative 
with respect to the set {h1,..,hd}, e.g., h=(1,0,..,0)T denotes the first order 
derivative with respect to x1. The notion (x−x0)h= dh

dd
h xxxx )0()0( 1

11 −− �  and 

h!=h1!···hd! From Taylor’s theorem follows that when the number of terms goes 
towards infinity the approximation, Eq. (9), becomes exact, given the 
assumptions of continuity and differentiability of I in x0. Consequently, the 
manifold I(x) can in the limit be characterised in the point x0. This property of 
Taylor’s expansion implies that optimal minimal error-rate segmentation of an 
image can in theory be based on the complete set of vectorial derivatives DhI(x), 
h ∈ Λ, x ∈ X. (It is well-known that in many cases a Taylor expansion is not 
the most compact polynomial approximation of a differentiable function, for a 
discussion see, e.g., [29]. However, this fact does not change the result). 

 Let us define the complete set of derivatives I(x)≡ )(xh

h
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N-jet [24], and assume that the image element is classified by Bayes’ rule 
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The minimal error-rate that can be obtained follows from Eq. (4) 
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with Rj={I(x)| P(ωj) p(I(x)| ωj) > P(ωi) p(I(x)| ωi), ∀i≠j}. Hence, ε* is the minimal 
error-rate that can be obtained with the set of derivative features specified by 
the dimensionality of  Λ, i.e., the number of derivatives included in the feature 
vector. From the definition of Rj and the winner-takes-all rule (2), it follows 
that the prior and (overlapping) class-conditional distributions jointly 
determine the error-rate that is obtained. As a consequence, the classification 
result with the minimal error rate ε* can only be obtained when P(ωj), j=1,..,c, 
constitute the probabilities that the patterns belong to the c different classes. 
 Assume that the prior distribution of the c classes in the training set is given 
by P(ωj), j=1,..,c. The resulting classifier partitions the feature space into the 
disjoint regions, R1,..,Rc, as defined in Eq. (3). Assume further that in an actual 
image to be segmented, I, the prior distribution of occurrence of the different 
segments is given by PI(ωj). If the observed prior distribution in the image I 
differs from that in the training set, ∃j ∈ {1,..,c}, P(ωj)≠PI(ωj), we can show that 
segmentation of I using Bayes rule, Eq. (10), results in an error rate ε(PI(ωj)) 
that is always larger than or, at best, equal to the optimal error rate ε*. 
 
Theorem 3.2.1. The realised probability of error is always larger than or equal to 
the minimal error rate, ε(PI(ω1),..,PI(ωc))≥ε*, in case of overlapping class-

conditional distributions, p(I(x)| ωj), j=1,..,c. 
 
Proof 
It follows from Duda & Hart [22] that the integral 

 ∑∫
=

ℜ
∗ ∈−==

c

j
jjj RPPdperrorP

d

1

)|)(()(1))(())(|( ωωε xIxxIxI   (12) 

should be as small as possible for every x which implies the use of the winner-
takes-all rule, Eq. (2), i.e., the class label with the maximal posterior 
probability, P(ωj|I(x)), should always be assigned to I(x). Now, from McMichael 
[30] follows the exact correction for the novel prior probability by the formula 
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with )()( ijij PP ωω ≠Σ=  and ))(|())(|( xIxI ijij PP ωω ≠Σ= . Classification of 

image elements by applying Eq. (2) to PI(ωj|I(x0)) gives the optimal 
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segmentation result. In case of overlapping class-conditional distributions, 
P(ωj|I(x))≠PI(ωj|I(x)), when ∃j: P(ωj) ≠ PI(ωj). Consequently, RI,j≠Rj, with RI,j 
={I(x)| PI(ωj|I(x)) > PI(ωi |I(x)), ∀i≠j}. Thus, for the error-rate holds 
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with the minimal error rate being 
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QED 
 
 A direct consequence of Theorem 3.2.1 is that regardless of which features 
are provided as input to the Bayes’ classifier, when the prior class distribution 
of the patterns differs from that of the training set used to build the classifier, 
the classification result will have an inferior overall error rate (in case of 
overlapping class-conditional distributions and P(ωj)>0, PI(ωj)>0, j=1,..,c). It is, 
however, possible to correct the classifier for a changed, prior distribution by 
means of the formula Eq. (13). 
 
We can furthermore prove the following lemma regarding the class-conditional 
error rate: 
 
Lemma 3.2.2. The class-conditional probability of error 

jωε  is unchanged for 

any prior class distribution, PI(ωj). 
 
Proof 
From the definition of the overall error rate 
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Using Bayes’ rule, the denominator may be rewritten as 
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which, according to the conditioning property, yields PI(ωj). So 
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which, for a given classifier, R1,..,Rc, is independent from the prior probability 
distribution in a particular image I, PI(ωj), j=1,..,c. 

QED 
 
This lemma shows that the error-rate per class remains constant irrespective 
of the actual class distribution in an image PI(ωj). 
 
3.2 Segmentation under zooming  
 We will now investigate the effect of changing the field-of-view in an image. 
First, we need to define the magnification function, M, which is responsible for 
zooming the image, M: I(x) × ℜ+  → I′(x): 
    ii XxkIMI ∈=′ ),),(()( xx     (20) 

where M(I(x),1)=I(x). Realizing that the magnification function will in most 
cases lead to a different prior distribution of the segments, PM(I,k)(ωj), it is clear 
that zooming will, in general, lead to an inferior overall error rate, unless the 
posterior probabilities are corrected for the novel prior probability distribution. 
We formulate two corollaries: 
 
Corollary 3.3.1. Pixel-based segmentation algorithms based on statistical 
pattern classification give a higher over-all error rate ε(PI(ωj)), than the minimal 

error rate ε*, when the prior probability PI(ωj) of one or more of the segments 
differs between training and test sets, e.g., as a result of zooming. 
 
Corollary 3.3.2. Pixel-based segmentation algorithms based on statistical 
pattern classification give the same class-conditional error rate error 

jωε  for any 

prior probability distribution, PI(ωj), j=1,..,c.  
 
As a consequence, when the accumulated size of a segment increases or 
decreases, the overall error rate becomes inferior whereas the relative error per 
type of segment remains constant. It should be noticed that it is not the 
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magnification operation itself that can cause the prior probabilities of the 
different segments to change. The prior probabilities change because an image 
is a discrete signal with a fixed sampling scheme. Hence, zooming in on, e.g., a 
certain specific texture implies that the other textures comprise a smaller part 
of the image content (the field-of-view). It follows directly from Lemma 3.1.2 
that the class-conditional error rates 

jωε , j=1,..,c, remain constant irrespective 

of which magnification factor k is chosen. 
 
 
4. Scale selection in the discrete scale space 
 
4.1. Discrete scale space 
 In digital image processing, the image I(x) is a discrete signal with a finite 
number of sample points. Computation of derivatives of a discretely sampled 
signal is an ill-posed problem. In the linear scale space, differentiation is 
performed by convolution with derivatives of the Gaussian kernel, which 
transforms differentiation into a well-posed problem [24]. It has also been 
shown that a convolution with Gaussian derivative kernels satisfies Eq. (7). 
Hence, regularised differentiation of a discrete image relies on the following 
equivalence, DhI(x)∗G(x;t)= I(x)∗DhG(x;t), with ∗ indicating the convolution 
operation. The crux in the linear scale space lies in the commutative properties 
of these two steps because one can instead differentiate the (blurred) Gaussian 
kernel and subsequently perform the convolution with the image. 
 In the discrete case, we can rewrite the Taylor expansion, Eq. (9), as 

  ( )
!

)0(
)0();0()0()0(

h
xx

xxxxx
h

h

h −∗+≅− ∑
Λ∈

ItGDII t    (21) 

in which the convolution with the Gaussian derivative operator facilitates the 
regularised differentiation of I(x), for x=x0. Note that in the continuous case, 
I(x)∗DhG(x;t) → DhI(x) for t→0+. We will now define the discrete equivalent to 
I(x), the complete set of derivatives computed for a set of different scales, 

I(x0,Σ)≡ )0();0( xxh

h
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stt ),..,( 1=Σ  denoting the set of scales 

at which the derivatives are computed. This set of derivatives is called the 
discrete N-jet [24]. The discrete Taylor expansion, Eq. (21), differs from its 
continuous counterpart, Eq. (9), because of the differential operator which is 
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used to compute the regularised derivatives pertaining to the discrete image 
I(x). As a result, there exists a minimal scale at which images can be 
segmented. Based on an analysis of the density of local extrema in the 
continuous and the discrete scale spaces, Lindeberg computed the minimal 
scale at which these two density functions correspond [31]. His analysis 
indicates that for a value of t below 0.58482, the continuous analysis is not a 
valid approximation of its discrete counterpart. Moreover, a reliable and stable 
computation of derivatives requires even more blurring; the higher the 
derivative, the more regularisation is required [32]. 
 Within the framework of the linear scale-space theory, scale itself is treated 
as a free parameter that is varied across all possible scales [31]. The scale at 
which a particular scale-space feature detector (e.g., a junction detector) gives 
the maximal response, is considered the natural scale of the located feature. 
However, whereas the method for scale selection proposed by Lindeberg [31] 
and elaborated in [33] works well for noise-free, sharp images, his experiments 
also show that either a slight blur or a perturbation by noise will result in a 
different natural scale being selected [33]. This is caused by the trade-off 
between bias and variance, which is implicitly chosen during scale selection. 
Blurring with a wide Gaussian kernel − the generating function in the linear 
scale space − results in a robust detection result, which is insensitive to the 
random components in the high-frequent noise in the image. However, the 
location accuracy of a feature detector operating at a coarse scale is poorer than 
the accuracy obtained by the same detector applied at a finer scale [31]. 
Although much blurring suppresses high-frequent noise, the finer-scaled edges 
in the image migrate − the extent of the migration increases with the width of 
the kernel used for blurring the image. This migration is essentially a location 
bias. It is clear that in the presence of noise, the choice of an appropriate scale 
in a segmentation approach enforces a trade-off between location bias and 
variance. Recognising that scale-selection remains an ill-posed problem in 
signal-driven segmentation, we propose to let a Bayesian classifier perform 
scale selection by optimisation of an error criterion. 
 
4.2. Scale selection − balancing between bias and variance 
 Computation of the (derivative) features in the linear scale space essentially 
consists of two steps: blurring (regularisation) with the Gaussian kernel 
followed by differentiation of the image. In the sequel, we will study the effect 
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of blurring the image in the presence of additive, Gaussian noise.  
 Define the “noisy” image Ie(x) as 

    );()()( 2σxxx eII e +=      (22) 

with e(x;σ2) an additive, Gaussian-distributed noise term, e(x;σ2) ∼ U(µe, σ2), 
with a zero mean µe and a variance σ2. Blurring the image Ie(x) with the 
Gaussian kernel G with the scale parameter t yields 
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This convolution integral partitions into 
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The bias term represents the part of the original (noise free) image that is 
retained, i.e., the image after high-frequent details have been removed. The 
variance term indicates the result of blurring away the additive noise. The 
following property holds 
 
Proposition 4.2.1. The variance term of Ie(x)∗G(x;t) approaches µe for t → ∞. 

When µe=0, the variance term vanishes. 
 
Proof 
A convolution with the Gaussian function can in the Fourier space be written 
as ℑ{e(x;σ2)∗G(x;t)}=ℑ{e(x;σ2)}⋅ℑ{G(x;t)}. The Fourier transform of the Gaussian 
function ℑ{G(x;t)} is also a Gaussian function. For t → ∞, ℑ{G(x;t)} becomes a 
Dirac pulse, for a 2-dimensional image δ(u,v). As δ(0,0)=1 and δ(u,v)=0, 
∀(u,v)≠(0,0), solely the mean µe is retained from ℑ{e(x;σ2)}⋅δ(u,v)=Xi µe, with Xi, 
the number of pixels in a row in  the quadratic image I(x). It follows directly 
that when µe=0 the variance term vanishes. This result generalises by 
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induction to d-dimensional images. 
QED 

 
Blurring away noise has a price, namely an increased (location) bias 
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It is a consequence of the linear diffusion equation, Eq. (7), that blurring with 
the Gaussian kernel introduces a location bias; the largest bias occurs around 
the edges in the image (so-called edge migration) whereas large homogenous 
areas remain largely unchanged. 
 
4.3. Classification in the presence of noise 
 Until now, we have only examined the influence of additive noise and 
blurring on the distorted image Ie(x). In the sequel, we will incorporate these 
aspects into the statistical model of the image, which forms the basis of 
minimal error-rate segmentation as sketched in Section 2. Let z=I(x) denote 
the set of vectorial-derivative features derived from the image. When we 
assume that the additive noise term is independent of the co-ordinate in the 
image, the resulting marginal probability density function can, in the presence 
of noise, be written as a convolution [34] 
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with e(z′;σ2) indicating the noise added to the feature vector z′. The resulting 
marginal probability density function, pe(z), is wider than the noise-free density 
p(z). Writing the marginal density as p(z)=Σj p(z|ωj)P(ωj), Eq. (28) can be 
rewritten as 
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which equals 
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It is clear that the additive noise term entails a convolution of each class-
conditional distribution with the probability density function p(e(σ2|z′)). 
Consequently, the class-conditional distributions will have a larger overlap in 
the presence of noise which gives a poorer classification result in the presence 
of noise. 
 An analytical study of the effect the location bias has on the (optimal) error 
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rate ε*, presupposes that the true (noise free) function I(x) is known. This is 
generally not the case in practical image processing. We propose to use the 
overall error-rate, ε(Σ), to determine the optimal blurring that results in the 
best possible segmentation result, where the error rate ε(Σ) is considered a 
function of the sampling scheme Σ in the linear scale space. 
 
 
4.4. A statistical approach to scale selection 
 Segmentation approaches based on features from the (linear) scale space 
require a mechanism for scale selection, i.e., the dimension and entries in the 
sampling scheme, Σ. Neglecting this issue will lead to inferior segmentation 
results as was shown by experiments reported in [9, 21]. For most practical 
segmentation tasks, a specific range of meaningful scales Σ can be specified. 
This is especially the case in tomographic medical imaging (MRI, CT) where 
the absolute size of each voxel is completely determined by the acquisition 
protocol. Scale selection requires the following two choices: the limits of the 
sampled interval in the scale space, min(Σ) and max(Σ), and the sampling 
density in the scale space, card(Σ). (Note that the scale space is normally 
logarithmically sampled [31]). If the features do only consist of images blurred 
at different scales, an obvious choice for the minimal scale is the so-called 
“inner scale” of the image, i.e., no blurring takes place so min(Σ)=0. When also 
derivative features are included in the feature set z, a larger minimal scale 
should be chosen, min(Σ)>0. With respect to the maximal scale, the choice is 
determined by the maximal size of the segments one wants to detect, the noise 
level in the image material and the scale of the underlying structures that are 
being imaged. We propose the following algorithm for selecting the optimal 
sampling of the scale space: 
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Scale selection algorithm – scale invariant segmentation 
1. Compose a set of training images with a uniform prior class distribution. 
2. Choose the minimal scale min(Σ). If only blurred features are included, 

min(Σ) can be the inner scale of the image. Otherwise, the minimal scale 
needs to be varied also, min(Σ)>0. 

3. Choose a maximal scale, max(Σ), and a (logarithmic) sampling scheme Σ. 
4. Train a statistical classifier with the chosen features from the scale space, 

I(x,Σ). 
5. Compute the error rate ε(Σ) of the classifier on a test set that is 

representative for the desired application. If sufficient, stop, otherwise, 
choose a new (minimal and) maximal scale, and sampling scheme, goto 
step 4. 

 
 
5. Experiments 
 We performed a number of experiments with the algorithm for scale 
selection defined above. First, a set of quality measures is defined that makes 
it possible to study the effect of varying the sampling scheme in the scale space 
on the accuracy and the homogeneity of the obtained segmentation results. 
Subsequently, a classifier is chosen and used in an experiment with synthetic 
data to illustrate the theoretical results. Finally, a number of experiments with 
segmentation of dynamic contrast-enhanced MR images is performed. 
 
5.1. Spatial quality measures 
 The performance of a segmentation algorithm can be assessed with the true 
class labelling by computing a contingency table A, with ai,j  the number of 
voxels that are classified into class i while belonging to class j. The correctness 
ϕ, the fraction of voxels that is classified correctly, and kappa κ, the same 
fraction corrected with respect to the prior distributions, are derived from the 
contingency table [35] as follows: 
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 These performance measures do not take into account whether misclassified 
voxels are scattered all over the image or form one or a few connected clusters. 
To assess the effect of including images at different scales in the training set, 
we modified two existing spatial quality measures [36] by making them 
isotropic. Both spatial quality measures are based on the local entropy of the 
class labels in the labelled image and measure essentially spatial scatter and 
dispersion in a neighbourhood W(x). Define the entropy-image H(x): 
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where c denotes the number of classes, S(x) label assigned to voxel x, card(•) 
the cardinality function (number of elements) and W(x) a circular window. 

Define the class-conditional confidence θj as: 
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with ωj denoting the set of voxels truly belonging to class j. The size of the 
circular neighbourhood W(x) determines the scale at which the confidence is 
computed.  
 The class-conditional confidence is the estimated mean of the local entropy 
in the labelled image. We define also a dispersion measure, the class-
conditional uniformity, to capture the variation around this mean. Define the 
class-conditional uniformity γj as: 
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where λi ={x|i≤H(x)<i+1} denotes the set of voxels x ∈ X that have an entropy 

level i. The class-conditional confidence θj expresses the average entropy in a 
neighbourhood W(x) whereas the uniformity γj is a measure for the dispersion 

around θj. Both spatial quality measures are computed for the labelled image 
S(x). 



 18 

 
5.2 Choice of classifier 

 The optimal classifier with the error rate ε* generally entails a non-linear 
partitioning of the feature space in regions R1,..,Rc. Neural networks with one 
hidden layer have been shown to approach the minimal error-rate classifier 
when the number of hidden nodes and the size of the learning set both go 
towards infinity [37]. It may even approximate a quadratic discriminant 
exactly after training with a gradient-descent learning algorithm [38]. Finally, 
a feed-forward neural network with one hidden layer is capable of 
approximating any continuous discriminant function [39, 40]. 
 In our application – segmentation of dynamic MR images – the type of 
underlying feature distributions is unknown so we decided to use a multi-layer 
feed-forward neural network as classifier. For neural networks to perform best 
in classification tasks, each output node should represent a specific class [41]. 
As it has been shown that feed-forward neural networks approach the Bayes 
minimal error-rate classifier, the elements of the output vector oi can be 

interpreted as posterior probabilities, oj ≈ P(ωj | z), j = 1,..,c. 
 
5.3 Experimental set-up 
 A set of experiments with perfusion MR-images of patients with bone 
tumours (Ewing’s sarcoma) was conducted. The perfusion of blood in the tissue 
under study is being assessed by continuously acquiring a sequence of MR 
images while a bolus of MR contrast tracer (Gd-DTPA) is given intravenously 
(see [42]). The primary goal was to develop a scale-invariant, signal-driven 
segmentation approach based on a statistical classifier. In [9, 21, 42], it was 
shown how features derived from pharmacokinetic functions, fitted onto the 
dynamic MR signal, can be used for segmentation into viable tumour, 
nonviable (necrotic) tumour and healthy (normal) tissue. However, this 
segmentation approach requires excessive computation since a 
pharmacokinetic model has to be fitted to the dynamic MR signal associated 
with each voxel. Instead, we developed a segmentation approach based on the 
normalised dynamic MR-signal, I(x,τ), given by the dynamic sampling scheme 
τ=1,..,T. 
 We propose a signal-driven segmentation algorithm, which will be based on 
a sample obtained from the linear scale space 
    Σ∈∗= ttGItI ),;(),(),,( xxx ττ     (36) 
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with G(x;t) denoting the Gaussian kernel. Previous experiments [9, 21] have 

indicated that the inclusion of derivative features I(x,τ)*DhG(x;t) does not 
improve the segmentation result for bone tumours. Consequently, such 
derivative features were omitted in the experiments reported here. Instead, it 
will be shown how dynamic MR images can be segmented from the shape of 
the dynamic MR signal, see Figure 1. 
  

 The dynamic MR signal is affected by both a random and a systematic 
distortion; the noise introduced by the MR device and the MR signal 
fluctuations caused by the heartbeat. The fluctuations associated with the 
heartbeat are caused by a combination of uneven mixing of the bolus in the 
blood, the pumping of the left ventricle and the flow sensitivity attributed to 
the chosen MR sequence. Although a simple low-pass filtering may eliminate a 
large part of the high-frequency noise, this technique is not suitable in our 
application because important high frequencies that characterise the up-take 
speed of the contrast tracer would also be heavily damped. Morphological 
operators, on the other hand, retain the large edges. The morphological min-
max filter [43], which we used for preprocessing, is defined as: 
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with b(τ) = {τ−(w−1)/2, τ+(w−1)/2} and I(τ) denoting the intensity associated 
with voxel I(x,τ). 
 Generally, the strength of signals obtained from an MR-scanner depends on 
several factors such as the tumour location, the weight of the patient and the 
relaxivity of the surrounding tissue. The most important factor determining 
the signal amplitude and level is, however, the affine scaling that is performed 
by the software on the MR scanner. Besides this scaling, there is also an 
intensity-offset that differs between the various scans as well as within one 
scan. To correct for these differences, an offset-estimation is made by 
calculating the mean of the sample points before τ0 (when injection with  
paramagnetic tracer is started). The signal Î(τ) is normalised according to 

    TIRSII offset ∈−⋅= τττ ,)()(ˆ     (38) 

with RS denoting the scale-factor, obtained from the MR scanner and Ioffset the 

Figure 1 about here. 
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intensity-offset. 
 Before our approach to scale selection can be evaluated on the dynamic MR 
images, the correct segmentation result, i.e. the correct class membership of 
each voxel, is required. In some applications, the correct segmentation result 
has to be specified by a mask, annotated by a human expert [8]. However, such 
manually drawn annotation masks are subject to intra- en inter observer 
variation. Moreover, in our application the desired segmentation result cannot 
be annotated in the MR image sequence as complex characteristics of the 
dynamic MR signal are indicative for the correct class membership of each 
voxel. Instead, we benefit from the fact that for bone sarcoma, the 
postoperative histologic specimen is regarded as an objective gold standard 
when it comes to tissue classification. In our application, segmentation masks 
are obtained by matching postoperative specimen with the MR images 
according to a method developed in [42] and applied in [9, 21]. The differences 
in scale, orientation and position between the MR section and the histologic 
macroslice are computed using a method based on the principle axes of the 
coordinate sets obtained by sampling the contours [44], for details see [21]. The 
matched histologic macroslices constitute masks that indicate the true class 
membership of each voxel in the MR images. 
 
5.3.1. Experiment with synthetic data 
 The purpose of the first experiment was to verify the theoretical results 
(Theorem 3.2.1 and Lemma 3.2.2) regarding the effect of magnification on the 
change in the overall and class-conditional error rates. Three synthetic MR 
image sequences, each with two segments representing viable tumour and 
healthy tissue, were generated. Each MR image sequence consisted of 25 
dynamic images with a resolution of 256×256 pixels. In each sequence, a circle 
with a specific radius, respectively 256 pixels, 81 pixels, and 26 pixels, 
indicates the tissue “viable tumour”, which resulted in the following prior 
distributions: PI1(viable)=0.79, PI2(viable)=0.079 and PI3(viable)=0.008. The 
segment “viable tumour” was based on the MR signal extracted from a central 
part of an area with viable tumour in a typical patient, as indicated by the 
registered mask. A dynamic MR signal representative for “healthy tissue” was 
extracted in a similar way. Gaussian-distributed noise with a zero mean and 
the variances σ2(healthy)=5, σ2(viable)=10, was added to the respective signals, 
and the three synthetic image sequences were combined according to the three 
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masks. A neural network was subsequently trained during 5.000 cycles with 
standard back-propagation [45] to segment the images, based on a training set 
with 10.000 patterns where each of the two classes had the same prior 
probability, P(viable)=P(healthy). The feed-forward network had 25 input 
nodes, eight hidden nodes and one output node, associated with the class viable 
tumour. In the training set, the desired output was set to 1 for viable tumour 
and 0 for healthy tissue. The neural network was subsequently applied to the 
three synthetic image sequences.  

 
 The performance of the trained neural network was analysed in two ways on 
the three resulting output images: According to an uncorrected segmentation 
scheme (the output image obtained by convolution with the neural network 
was classified using the winner-takes-all rule Eq. (2)), and according to a 
corrected scheme: Each of the three output images was postprocessed according 
to the rule of McMichael [30], Eq. (13), with the correct prior probability, before 
the winner-takes-all rule was applied. 

 The results are shown in Table 1. This experiment confirms that the class-
conditional performance is unaffected by the change in prior probability, 
PI(viable), in the image material. To optimise the overall error rate ϕ, the 
correction formula, Eq. (13), should be applied whereas constant class-
conditional error rates can be obtained from a uniform prior (in the training 
set), thereby leaving the output of the classifier uncorrected. 
 
 5.3.2 First experiment with MR image sequence 
 For all further experiments, we constructed a pattern set consisting of data 
chosen at random from six different patients with bone tumours using the 
masks as defined from the corresponding histological images, see [9, 21]. The 
complete pattern set contained the dynamic MR signals of each individual 
voxel, and was  subsequently split into a training and a test set consisting of 
10.000 and 2.500 voxels, respectively. 
 In an earlier pilot experiment, we had used a training set in which the prior 
probabilities for the three classes were as observed in the set of images. These 
experiments gave poor classification results as the networks were unable to 

Table 1 about here. 

Figure 2 about here. 
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classify correctly any dynamic MR signal pertaining to the most infrequent 
class, viable tumour. Therefore, in our training set the three classes had the 
same prior probability (a uniform prior). The test-pattern set had prior 
probabilities PI(ωj), j = 1,..,c, as averaged over the whole MR image data set, 
because we eventually want to select a neural network that performs well on 
representative image material. The width of the min-max filter and the 
number of hidden nodes were both varied. The results on the test set consisting 
of 2.500 dynamic MR signals are shown in Table 2. 

 The first experiment (top part of Table 2) indicates that eight hidden nodes 
result in a good performance on the test set, especially for |b|>7. We 
experimented further with this network topology while increasing the width 
|b| of the min-max filter. A filter width of fifteen appeared to perform best in 
combination with a neural network with eight hidden nodes. In the remaining 
experiments in this article, we have used these values for filter width and 
number of hidden nodes. 
 
5.3.3 Experiment with scale selection approach 
 In this experiment, we investigated our approach to scale selection and 
studied the effects of varying the sampling of the scale space on the 
performance. As earlier experiments with the same image material indicated 
that derivative features do not contribute to the segmentation of the dynamic 
MR images of bone tumours [9, 21], we decided solely to use blurred versions of 
the dynamic MR images as extra input to the classifier. As blurring is a 
regularisation operation, it is to be expected that the classifier that performed 
optimally in the first experiment will also perform well when the blurred 
image data are added as input. Of course, the signal intensity obtained from 
the original image sequence is highly correlated with the intensity obtained 
from the blurred versions of the same dynamic MR images.  
 The previous experiment confirmed the added value of the min-max filter for 
preprocessing the dynamic MR signal. This result may indicate that a spatial 
(grey-level) morphological smoothing operator such as an opening [46, 47] can 
improve the segmentation result. Furthermore, it makes it possible to broaden 
the scope of our experimental evaluation of the approach to scale selection by 
experimenting also with feature images from the morphological scale space. 
Let I(x) be a single MR-image at time τ. The morphological opening is defined 

Table 2 about here. 



 23 

as 
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where B denotes the kernel, which is in this case an isotropic disc, r = rad(B) 
[46, 47]. The size of the kernel, measured in millimetres, must again be equal 
for all MR scans so the absolute scales are kept constant for all patients. 
  We used the “inner scale” of the dynamic MR images in conjunction with 
either the image obtained from the linear or the morphological scale space, 
respectively. The maximal scale, max(Σ), was varied while studying the 
resulting performance of the trained neural networks on the representative 
test set. The kappa and correctness measures as well as the spatial quality 
measures were computed. Class-conditional confidence and uniformity were 
solely computed for the classes viable and nonviable tumour. Table 3 
represents the width of the Gaussian and morphological kernels, measured in 
squared millimetres. 

 When comparing features from the linear scale space, we provided as input 
to the neural classifier the two largest kernels (t= 12 and 15 mm2) resulting in 
the highest kappa and correctness measures. The local confidence θj (averaged 
over all six patients) was maximal for t = 12 mm2. As shown by the resulting 
image of a patient in Fig. 3c, the large artery was correctly labelled as healthy 
tissue and the scatter in the image was reduced. For features obtained from 
the morphological scale space, the disc with a radius of 10 mm2 resulted in the 
best performance as measured with the kappa and correctness measures. The 
spatial quality measures fluctuate as a function of the disc size but, more 
important, the spatial quality is poorer than obtained with features from the 
linear scale space. Consequently, the amount of scatter in the labelled image 
(e.g., Fig. 3d) is higher than that obtained with features from the linear scale-
space. 

 This experiment indicates the feasibility of using the classification result 
obtained with a representative test set to choose the appropriate set of scales in 
the linear or morphological scale spaces. Another example can be seen in Fig. 
4, showing the segmentation results for a different patient. 

Table 3 about here. 

Figure 3 about here. 
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 The performance measures can be used to find the scale(s) that give the best 
segmentation result for the image material at hand (represented by the test 
set). It is clear that the set of scales Σ resulting in the maximal number of 
correctly segmented voxels does not have to coincide with the set of scales with 
the highest maximal confidence. Consequently, a trade-off may have to be 
made between performance and spatial coherence. Such performance trade-offs 
often occur in practice where an algorithm has to fulfil more, possibly 
contradictory requirements. For a discussion of this issue see, e.g., [35, 48]. 

 The best neural network has been used to segment a 3D-dataset consisting 
of 8 MRI sections of a bone tumour located in the bone marrow of a femur (hip). 
The segmentation result was visualised (see Fig. 5) by combining two volume 
rendering techniques: iso-surface rendering and maximal-intensity projection. 
Iso-surface rendering was used to indicate healthy bone marrow, which has a 
high intensity in T1-weighted MR images. The same technique was used to 
display the extent of the viable tumour remnants by thresholding the output of 
the neural network. Three maximal intensity projections of the image data, 
sagittal, transversal and coronal, depict the original MRI data. 
 
 
6. Discussion 
 The experiments we performed with synthetic and real MR image support 
the theoretical results presented in this paper. It is possible to use a statistical 
classifier to perform scale selection in the linear and morphological scale 
spaces. Thereby, the best (implicit) trade-off between location bias and 
variance is being made for a given test set. 
 Lindeberg showed that it is difficult to identify the optimal scale for a 
particular feature detector [33]. It should be kept in mind that the optimal set 
of scales depends on the amount of noise present in the images and the typical 
size of the (connected) segments one wants to find. In general, finding an 
analytical solution to this problem may be intractable. Our approach to scale 
selection is a pragmatic alternative, which may be applied to signal-driven 
segmentation algorithms based on spatial information from the linear or 

Figure 5 about here. 

Figure 4 about here. 
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morphological scale space. The approach results in a particular trade-off 
between (location) bias and variance, namely that, which minimises the error 
rate on a representative test set. One may prefer a smooth, labelled image with 
a high local confidence and a smaller correctness over a labelled image with 
more scatter and a higher number of correctly segmented voxels. The optimal 
trade-off between such conflicting criteria can only be determined by the end-
user. If one criterion is being used, the optimal sampling of the scale space can 
be found through experiments. 
 We introduced isotropic quality measures for studying the effect of varying 
the scale of the images provided as input to the neural net classifier. Such 
measures make it possible to quantify homogeneity aspects of a segmentation 
result, which may otherwise have been left for subjective assessment, for a 
discussion see, e.g., [49]. We feel that especially the local confidence measure 
results in plausible measures for the amount of scatter in a labelled image. 
 It is clear that for a signal-based segmentation classifier to be uncommitted 
with respect to scale, the prior class distribution in the training set needs to be 
uniform. This is a direct consequence of Theorem 3.2.1, Lemma 3.2.2 and 
Corollary 3.3.2. Experiments reported elsewhere indicate that, in general, for 
the linear discriminant and classification based on logistic regression [50], the 
best training result is obtained for a uniform prior distribution. The 
experiment with the synthetic image data confirms that the class-conditional 
error rates remain constant for a varying prior. Consequently, we recommend 
not using the formula of McMichael, Eq. (13), to correct for a different prior 
distribution, unless there is a clear expectation regarding the prior probability 
distribution of the different types of segments in a particular image. In other 
words, we advocate for an uncommitted segmentation approach based on a 
uniform prior class distribution. In a particular application, it can be desired to 
optimise the performance, thereby choosing a representative (non-uniform) 
class distribution. 
 It is well-known that trained classifiers suffer from the curse of 
dimensionality, which impedes generalisation when the number of features 
becomes high. This so-called peaking phenomenon [51, 52] implies an 
increasing difficulty in discerning discriminative from useless features as the 
dimensionality of the feature space increases [53]. The peaking phenomenon 
can prevent our scale selection algorithm from choosing the best set of scales. 
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7. Conclusion 
 In this article, we have analysed the problem scale selection for signal-
driven segmentation algorithms based on pattern classifiers. Theoretical 
results indicate that, in the presence of noise, the sampling of the (discrete) 
linear scale space entails a trade-off between (location) bias and variance. 
Based on this analysis, we propose to use the overall error rate obtained on a 
test set to optimise the sampling of the scale space. It is furthermore shown 
that the class-conditional error (per type of segment) remains constant per unit 
of area under zooming. This advocates for building an uncommitted signal-
driven segmentation approach based on a uniform prior class distribution in 
the training set. 
 The optimal set of scales depends on several factors including the noise level 
present in the image material, the prior distribution of the different types of 
segments, the class-conditional distributions associated with each type of 
segment as well as the actual size of the (connected) segments. Often, 
conflicting criteria need to be fulfilled in order to obtain the best possible trade-
off between variance and location bias. Experiments with a neural net 
classifier developed for segmentation of dynamic MR images illustrate these 
results. The experiments also show that adding spatial features to the 
classifier, extracted from the linear or morphological scale spaces, improves the 
segmentation result compared to a signal-driven approach based solely on the 
dynamic MR signal. The performance on a set of test images is used to select 
the two scales that result in the best performance. 
 Two novel spatial quality measures were introduced, both characterising 
spatial properties of a labelled image. These measures as well as the known 
statistical quality measures correctness and kappa, have been used to quantify 
the improvement of the obtained segmentation result. According to the 
computed quality measures, the linear scale-space is the best configuration for 
this tumour tissue classification task. 
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Figure 1. The perfusion MR signal associated with each voxel is obtained from 
the MR image sequence, preprocessed and provided as input to the neural 
network. A convolution with the MR image sequence results in a labelled 
(segmented) image. 
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Figure 2. The segmented synthetic MR images contain different fractions of 
voxels that belong to the class viable tumour (indicated with a bright colour). 
The radii of the three viable segments are 256, 81 and 26 pixels, respectively. 
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Figure 3. Segmentation results for one patient (Ewing’s sarcoma present in 
the tibia), with the white regions denoting viable tumour, the grey regions 
nonviable tumour and the black regions background / healthy tissue. (a) The 
histologic mask, (b) the result of a voxel-based classification (first experiment), 
(c) adding features from the linear scale space, (d) adding features from the 
morphological scale space. 

  
                      (a) (b) 

  
                      (c) (d) 
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Figure 4. Segmentation results for another patient (Ewing’s sarcoma), with 
the white regions denoting viable tumour, the grey regions nonviable tumour 
and the black regions background / healthy tissue. (a) The histologic mask, (b) 
the result of a voxel-based classification (first experiment), (c) adding features 
from the linear scale space, (d) adding features from the morphological scale 
space. 

  
                      (a) (b) 

  
                      (c) (d) 
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(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Visualisations of a 3D-MRI dataset showing nests with viable 
tumour in a femur (hip): (a) The nests shown with dark-grey have been 
detected by a neural network. The light-grey (iso-) surfaces indicate the 
healthy bone marrow inside the femur. The sides and the bottom show 
maximal intensity projections of the 3D MRI dataset. (b) The bone marrow is 
omitted allowing the observer to get a 3D impression of the size of the 
remnants with viable tumour. 
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Table 1 
Class-conditional correctness, kappa and overall correctness, for all three 
synthetic MR images with no correction, and corrected for the different prior 
distributions. 
 
  

 

 Uncorrected Corrected 
 circle 256 circle 81 circle 26 Circle 256 circle 81 circle 26 

1-εViable 0.71 0.72 0.71 0.88 0.44 0.00 
1-εHealthy 0.96 0.96 0.96 0.71 0.99 1.00 

κ 0.32 0.13 0.05 0.26 0.10 0.01 
ϕ 0.77 0.94 0.96 0.84 0.95 0.99 
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Table 2 
This table shows the correctness and the kappa values obtained for different 
combinations of the filter width |b| in Eq. (36), and network topology. All 
statistics were computed on a representative test set containing 2.500 patterns. 
 
 
 
 
 

 

 

Number of hidden nodes Filter 
width 

 
1 2 3 4 8 16 

κ 0.3559 0.4589 0.4765 0.4864 0.4820 0.4906 0 

ϕ 0.6665 0.7522 0.7672 0.7711 0.7664 0.7743 
κ 0.3549 0.4569 0.4665 0.4765 0.4995 0.4953 5 
ϕ 0.6657 0.7515 0.7573 0.7664 0.7818 0.7782 
κ 0.2783 0.4567 0.4652 0.4706 0.4845 0.4920 7 
ϕ 0.5919 0.7459 0.7537 0.7577 0.7668 0.7739 
κ 0.2794 0.4865 0.4921 0.4956 0.5104 0.5159 11 

ϕ 0.5955 0.7656 0.7727 0.7727 0.7849 0.7889 
  8 hidden nodes 
 Filter 

width 
13 15 17 21 25 29 

κ 0.5106 0.5166 0.5100 0.5081 0.5103 0.4984  
ϕ 0.7865 0.7889 0.7861 0.7873 0.7857 0.7802 
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Table 3 
This table contains the kappa and correctness measures, the confidence and 
the uniformity, as computed by applying the neural networks to the test set. 
The most suited kernel size for the linear scale space is 12−15 mm2, for the 
morphological scale space it is 10 mm2. 
 
 
 
 

 
 

 
 Kernel size in mm2 Kernel 
σ2 5 8 10 12 15 

κ 0.5649 0.5811 0.5674 0.5874 0.5964 
ϕ 0.8772 0.8796 0.8788 0.8852 0.8858 
θ1 0.7469 0.7398 0.7847 0.8549 0.7983 

γ1 0.2541 0.2493 0.3262 0.4399 0.2977 

θ2 0.6422 0.7160 0.6986 0.7466 0.6993 

Gauss –  
linear  
scale  
space 

γ2 0.2251 0.3535 0.2498 0.2780 0.2390 

κ 0.4670 0.4754 0.5078 0.4780 0.4805 

ϕ 0.8434 0.8465 0.8604 0.8434 0.8478 

θ1 0.6561 0.6426 0.6953 0.6404 0.7067 

γ1 0.2077 0.1944 0.2038 0.2137 0.2110 

θ2 0.5287 0.6446 0.5365 0.6263 0.5565 

Disc –   
morphological 
scale  
space 

γ2 0.1375 0.1829 0.1281 0.2250 0.1009 

 
 


