Reprinted from (M. Egmont-Petersen. “Homomorphic transformation from neural
networks to rule bases,” In: E. Mosekilde (Eds.), Proceedings of the European
Simulation Multiconference 1991, pp. 260-265, 1991).

Single copies of this article can be downloaded and printed for the reader’s personal
research and study.

For more information, see the Homepage of Michael Egmont-Petersen:
http://www.cs.uu.nl/people/michael

Comments and guestions can be sent to: michael@cs.uu.nl



Homomorphic transformation from
Neural Networks to rule bases

Michael Egmont-Petersen, Industrial Ph.D.-student
Institute of Computer and Systems Sciences
Copenhagen Business School
Jul. Th. Plads 10,

DK-1925 Frb. C.

Denmark
E-mail: michael@dasy.cbs.dk

Abstract: In this article a method to extract the knowl-
edge induced in a neural network is presented. The
method explicates the relation between a network’s
inputs and its outputs. This relation is stored as logic
rules. The feasibility of the method is studied by means
of three test examples. The result is that the method
can be used, though some drawbacks are detected. One
is that the method sometimes generates a lot of rules.
For fast retrieval, these rules can well be stored in a B-
tree.

1. INTRODUCTION

Neural networks is a simulation tool which have
been used in a variety of tasks during the recent years.
They have been trained to classify patterns from many
different domains (Confer e.g. Eberhart & Tzanakou
1990). Their ability to recognize or associate patterns
has been an example of how to “reason” within fuzzy
domains. In spite of these abilities, Neural Networks
have not been utilized practically as much as they could
because they have some drawbacks. One is the way in
which knowledge is represented in a network. To
overcome this difficulty (as well as others) researchers
have tried to link neural networks and symbolic systems
together to utilize the benefits of each. In one article
(Myllymaki et.al. 1990) it is described how neural
networks can be used to link different parts (slots) of a
frame-based system. This hybrid system can associate
mutually relevant information. Neural networks have
also been used to add procedural knowledge to a rule-
based system (Gutknecht & Pfeifer 1990). But the work
of (Bochereau & Bourgine 1990) is mostly related to

the experiments outlined in this article. In their paper a
method for explicating the knowledge induced in neural
networks is discussed. The strategy pursued was to
extract rules from a trained network manually. These
rules took form as inequalities.

Here, some experiments done to extract rules from
neural networks are presented. First, a training set had
been established. This set was generated on the basis of
a set of known logic rules stored in a prolog program.
This program generated the complete truth table related
to each rule. Each truth table was used as the training
set for a series of networks. Networks with a different
number of hidden neurons were trained with the same
truth table in order to discover whether increasing the
number of hidden neurons degenerates the networks’
abilities to generalize. Moreover, each of these different
network configurations were trained with different
fractions of the training sets.

After the networks have been trained, a rule extrac-
tion algorithm was applied. Its output comprised a set
of rules which, if fulfilled, result in the output true. Each
set of rules was merged into a decision tree. The quality
of these trees is then analyzed. Thus, the purpose of the
work presented here is to discover whether the rule
extracting approach is feasible or not.

2. SYNTHESIZING RULE BASES PARS-
IMONIOUSLY

The rules used in the experiments were based on a

260



three-valued logic, that is, it contains: “True”, “False”
and “Don’t know”. When a rule was evaluated, its
premises were bound to a configuration within the
“truth-space”. A neural network was then trained with
this three valued truth table for a number of cycles by
means of the traditional Backpropagation algorithm
(this was based on the hyperbolic tangent function). The
output of the network fell into the space }-1,1f, but
actually only 0 and 1 were used as training outputs. In
this way, false was designated as a 0 and true was desig-
nated as a 1. When the premises of a rule were fulfilled,
its output was, thence, true.

During training, the weights were arranged in a con-
figuration which minimized the squared error. After-
wards, these weights were loaded into the algorithm
which performed a synthesis of the network’s response
to a large number of questions.

The rule-extraction algorithm applied afterwards is
rather straight forward. It combines the entropy measure
(known from information theory and used in the ID3
algorithm) with a recursive algorithm capable of propos-
ing “questions” to the trained network. The basic idea
is as follows: First, the entropy related to each of the
premises with respect to classifying the output correctly,
is calculated. The premises are, then, sorted in ascend-
ing order with respect to their entropy. Afterwards, the
recursive algorithm is applied. This algorithm binds
combinations of premises which are clamped onto the
neural network’s input side. If the result of a certain
combination of premises is e.g. true then the least sig-

‘nificant premise is changed and this, slightly changed,
combination of premises is then clamped onto the
network. (The least significan premise is the one with
the highest entropy). If the network’s output is ap-
proximately the same (in fact above a certain threshold,
here %), then the premise is changed again. This way,
it takes three trials to evaluate the influence of each
premise i.e. True, False, and Don’t know. If all three
combinations results in the same classification the
premise is taken to be a Don't care premise combined
with the values held by the rest of the premises. Hence,
the complexity of the rule tree is reduced by one level.
The following can well serve as an example (In the
notion used the comma °,’ serve as a logical and). If the
algorithm has been called with the combination of

261

premises:
D=true, A=true, B=false, C=true, (E=7?)
0.51 0.56 0.89 091 0.94

and the network gives an output above e.g. 0.5 for E
being both true, dont_know, and false, then the last part
of the hypothesized rule is left out due to its status as a
don’t-care premise (The number below each premise is
the entropy of each premise). Hence, the hypothesized
rule is now: A

D=true, A=true, B=false, C=true

The same procedure is continued until a change of one
of the premises makes a significant change in the output
of the network. Thus, if the change of e.g. B from false .
to dont_know draws the output beneath the threshold,
a boundary has been found. Hereafter, the hypothesis:
D=true, A=true, B=false

is stored as a rule resulting in a decision which belongs
to the class frue.

The entropy measure is used to conduct the se-
quence in which the premises are changed. In the
example shown, D had the lowest entropy and was,
therefore, the last premise to be changed e.g. from
D=true to D=dont_know.

3. DESCRIPTION OF THE EXPERIMENTS

The experiments done cover three different training
sets i.e. three rules. These are:

B=true or

A =true,

C=true, A=false or

C=true, A=dont_know

P e ——) R
C=dont_know,A=true , B=true or
C=false , A=true |, B=dont_know or
C=false , A=dont_know, B=false or
C=dont_know, D=true

A=true or

A=dont_know, B=true or
A=dont_know, B=dont_know, C=true or
A=dont_know, B=dont_know, C=dont_know, D=true




or

A=dont_know, B=dont_know,
D=dont_know, E=true.

C=dont_know,

The truth space spanned out by each rule was 3°=243
possible combinations of true, dont_know, and false. The
prolog program generated the four complete truth
tables by evaluating the expressions above. 5 premises
were included in each network even though some
premises were redundant in relation to a rule. Net-
works were then trained with these truth tables. In the
truth tables e.g. premise 4 was represented by three
values (P, y, Py 5, Py 3) ie. one of these were clamp-v
ed to 1 and the two others to 0 when the premise was
cither true, false, or dont_know. For each truth table,
three different network sizes were applied: 15-7-1,
15-9-1, and 15-11-1, where the first number stands for
the amount of input neurons, the second the amount of
hidden etc. Each network configuration was trained
three times, each with a different fraction of the training
set picked out randomly: 100%, 80%, and 50%. This
gives 3*3=9 simulations carried out on each truth table.

The training itself were proceeded either until the
squared derivations (TSS) were less than 5 or until a
network has been trained for 300 epochs. Hence, the
networks were not trained for thousands and thousands
of epochs because just a few well converged networks
could suffice.

After the networks have been trained, the weights
and biases together with the training set, are fed into
the rule-extraction program. This program first calcu-
lates the entropy of each premise in the fraction of the
truth table used to train each network. Thus, if 50% of
the training cases are rejected from a simulation, the
same cases are excluded from the entropy calculation.

The results have not been analyzed statistically. This
is due both to the complexity of the rule base generated
by the extraction algorithm and to the sometimes small
changes in the rules bases when e.g. the network size
was increased.

3.1. First Experiment

In this experiment rule (1) has been used to gener-
ate the training set. Three different network topologies
have been trained with respectively 100%, 80%, and
50% of the training set. The results are promising,
though some enhancements to the algorithm are war-
ranted. The correct tree is shown in figure 1 (The
notation used in the trees is as follows: ‘A’ means frue,
‘>’ dont_know, ‘v’ false, and ‘/° symbolizes a leave
which leads to a true conclusion). In figure 2 a tree
generated by the extraction algorithm is shown. The
network which generated the rules was trained with only
80% of the cases. At first view, the figure 2 tree scems
more complicated than the reference tree shown in
figure 1. Though, the rules displayed in the bottom of
figure 2 can be reduced to the rules presented in figure
1. The difference is due to the dissimilar samples used
to calculate the entropy of the premises. Hence, premise
D has a smaller entropy than A in the simulation when
only 80% of the cases were presented. This causes the
algorithm to call D before A while generating the rules.
The point of interest is that the network in this situation
is more noise resistant than the entropy measure given
the way it is applied here.

af
— A
s/ A
cC» — B A/
v — A
L_ A
B
Rules:
C=false, B=true, A=true or
C=dont_know, B=true, A=true or
C=true

Figure 1. This decision tree is the reference tree used in
first experiment.

When only 50% of the training set is ued to train
the 15-7-1 network the tree shown in figure 3 is gener-
ated. This tree is a specialization of the tree shown in

‘figure 2 because the lower part of the figure 3 tree

(containing C=dont_know and C=true) is identical to
the trec in figure 2. Only the top branch differs. The

262



interesting point is that when a larger network is used
to learn the patterns (with nine instead of seven hidden
neurons), the correct tree is generated. Thus, the tree
shown in figure 2 is identical to the one extracted from
the network with 9 neurons, even though this had only
seen 50% of the patterns (this tree is not shown). The
only difference of this tree is the order of the premises.
This different order, in fact, gives a more complicated
tree. This indicates that the neural network is more
resistant to noise than the entropy measure. Others have
shown that nonlinear neural networks are more noise
resistant than the ID3 algorithm (Shavlik et.al. 1990).

The conclusion of the first experiment is that the
rule extraction algorithm seems to be applicable but the
entropy measure is not as robust as warranted. In this
way, the trees generated may have redundant branches.

Rules:

C=false, B=true, D=true,
C=false, B=true, D=dont know, A=true or
C=false, B=true, D-=false, A=true or
C=dont_know, B=true, D=true, A=true or
C=dont_know, B=true, D=dont_know,

A=true or

A=true or
C=dont_know, B=true, D=false, A=true

or
C=true

Figure 2. This tree is a variant of the tree pictured in
figure 1. At first aquaintance it looks more complicated
but it is actually identical to the first tree.

3.2. Second Experiment

In this experiment rule (2) was used to generate the

— E»/
A
—_— ApJ
v/
Er
A/ A I— /
—— B> — D> — A»/
v v v/
I A»J
v
L— B/
v/
ar/
v/
— B~/
A A
—— D> - A»/
v v/
l._ A’./
v
- E»J
v/
v
— A
A A/
— Dr— A
A A v A
C» —B L—a
v
s/
— A
A 'Y
— Dr— A
A v af
—- B L—a
Rules:
(not showed)

Figure 3. This tree is extracted from a network which is
trained with 50% of the cases from rule (1).

training set. The networks trained did not learn these
patterns as easily as the patterns from the first experi-
ment. Thus, the number of training cycles used to make

263



the network converge was high (agv. over 300).

The number of rules extracted from the networks
trained with the second training set was immense com-
pared to their source (Therefore, none of the trees are
shown here). This is due to the entropy measure. This
measure positions premise C in the last position of the
sequence because this premise has the highest entropy.
Hence, a premise which could reduce the size of the
decision tree, if it had been positioned in the root, is
positioned as a leave. The fact that premise C in many
cases cannot be ignored expands the number of rules
produced by the algorithm,

The conclusion drawn upon experiment two is that
the entropy measure is not always the optimal criterion
to use for sorting the premises. In this experiment, the
entropy measure produced a very deep tree!

3.3. Third Experiment

The third experiment is produced specially to reveal
some potential deficiencies of the rule extracting
approach. Neural nets are good to generalize (Movellan
1990) but some times this can be a disadvantage. If e.g.
some important specializations of a rule are ignored the
consequences can be fatal. The training set used in this
experiment originates from rule 3 which has a compli-
cated exception structure. If 4 is true, then the rule is
true. But, if we don’t know the value of A, then the
value of B suddenly is important etc. Rule number (3)
produces an unbalanced tree.

Figure 4 shows the tree based on the rules extracted
from a 15-9-1 network trained with 80% of the cases.
As can be seen, the network almost learned the patterns
completely correct. Only the exception with premise E
was not learned. The one pattern (out of 243) which
included E =true, while the others were dont_know, was
picked out by random. Hence, this is the reason for the
missing exception in the tree:

A=dont_know, B=dont-know, C=dont_know,
D=dont_know, E=True

Only the entropy measure fails to position the premises
in the correct sequence because placing premise D
before premise C introduces redundancy into the tree.
This can be avoided by reducing the expressions after-

wards by means of simple boolean rules. However, this
issue is not examined in further detail here.

s/

B

af A/ A A/
A» — B> — Dr — (C

L

Rules:

A=dont_know, B=dont_know, D=true, C=true
or

A=dont_know, B=dont_know, D =true,

C=dont_know or

A=dont_know, B=dont_know, D=dont_know,

C=true or

A=dont_know, B=dont_know, D=false, C=true
or

A=dont_know, B=true
or
A=true

Figure 4. This tree is extracted form a 15-9-1 network
which was confronted with 80% of the training cases
from the third experiment. The tree can be simplified by
switching the premises C and D.

The conclusion of the third experiment is that the
algorithm is feasible and that the networks have cap-
tured the special structure of the rule well even though
50% of the training set has been left out.

4, PRACTICAL APPLICABILITY OF THE
ALGORITHM

The algorithm discussed above has been analyzed
only on small samples. Furthermore, these samples
originated from existing rules. Employing the algorithm
in a domain in which the real rules are not known,
would be a better way to assess the feasibility of this.
But such investigations have at least two major pitfalls:
First, each time another premise is added to the net-
work the number of possibilities grow by a factor three.
Thence, one encounters the problem of combinatorial

264



explosion. Second, if most of the premises are depen-
dent of the others a lot of rules will be produced
because the tree generated will have no exits before a
bunch of premises have been included. Hence, also the
underlying domain can cause a combinatorial explosion.
It is important to take to two pitfalls mentioned above
under consideration. More specifically, the user must
know which kind of dependencies maybe exist between
the premises fed into the network. If the user trains
networks to model causal connections between the
inputs and the outputs (s)he must know which factors
serve as causes and which factors are effects. This issue
is shared with other quantitative models of cause-effect
relations.

Another issue regarding the applicability of the al-
gorithm is the massive number of rules which can be
produced by the algorithm. These rules must be stored
in memory if they should be beneficial to the user. It is
with this concern in mind that the B-tree is proposed as
a storing medium for the rules generated. Hence, the B-
tree can handle more than two branches in each node
(in this case three). Furthermore, some research has
been done regarding how to speed the access time,
amount of storage consumed etc. (Confer e.g. ). If the
algorithm is used to generate rules for an expert system
these can be stored in a “compiled” form as a decision
tree. This would facilitate a quick inference process.

If the algorithm is applied to domains in which it is
not known which factors are the “true” causes and
which just covariate with the outputs. Therefore, the
generated rules must be examined by means of some
heuristic. This means that the user can search the rules
generated for e.g. the rule with the fewest premises
included (This is similar to searching for the minimal
necessary sufficient cause for some phenomenon). Or
the user can e.g. search the rule base for the rules which
include premise C. In this way, the neural network is
applied as a kind of hypothesis generator for the user.
The hypotheses gencrated can, afterwards, be tested by
means of traditional statistical methods.

S. CONCLUSION

An algorithm to extract rules from trained neural
networks has been presented. Furthermore, three

265

different experiments with the algorithm were carried
out and the results analyzed. The conclusion is that the
rule extraction algorithm is feasible but that the entropy
measure is not robust enough when applied on only a
fraction of the cases belonging to a domain. Thus, the
neural network seemed to be more noise resistant. It
could not be shown whether increasing the number of
hidden neurons in a network enhances the complexity of
the rules generated, or not. Hence, this issue has to be
explored further.

Additionally, a few drawbacks inherent to the al-
gorithm have been pointed out. One is that adding a
premise to the network increases the number of queries
with a factor three. Another issue is that the number of
rules generated depends of the character of the underly-
ing domain. A caveat is- to ignore which factors are
causes and which are effects.

ACKNOWLEDGEMENTS

Thanks to Herco Fonteijn for comments on the paper.
REFERENCES

Bochereau, Laurent & Bourgine, Paul 1990. "Extraction
of semantic features and logical rules from a multilayer
neural network." Intemational Joint Conference on
Neural Networks (ICNN). P. 1I-579 to II-582.

Gutknecht, Matthias & Pfeifer, Rolf 1990. "An approach
to integrating expert systems with connectionist net-
works." AICOM Vol. 3 NO. 3. P. 116-127.

Eberhart, Russel & Tzanakou, Evangelia (ED) 1990.
"Special issue on the application of neural networks in
biology and medicine." IEEE Engineering in Medicine
and Biology.

Myllymiki, P. et. al. 1990. "Compiling High-level
specifications into neural networks." Interational Joint
Conference on Neural Networks (IICNN). P. II-475 to
11-478.

Shavlik, Jude et. al. 1990. "Symbolic and neural learning
algorithms: An experimental comparison." Computer
Sciences Technical Report #955, University of Wiscon-
sin-Madison.



